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Abstract. Emotion recognition in conversations is crucial as there is an urgent need to improve the overall experience of
human-computer interactions. A promising improvement in this field is to develop a model that can effectively extract adequate
contexts of a test utterance. We introduce a novel model, termed hierarchical memory networks (HMN), to address the issues
of recognizing utterance level emotions. HMN divides the contexts into different aspects and employs different step lengths
to represent the weights of these aspects. To model the self dependencies, HMN takes independent local memory networks to
model these aspects. Further, to capture the interpersonal dependencies, HMN employs global memory networks to integrate the
local outputs into global storages. Such storages can generate contextual summaries and help to find the emotional dependent
utterance that is most relevant to the test utterance. With an attention-based multi-hops scheme, these storages are then merged
with the test utterance using an addition operation in the iterations. Experiments on the IEMOCAP dataset show our model
outperforms the compared methods with accuracy improvement.
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1. Introduction

With the rapid development of Artificial Intelligence (AI) and the increasing interactions of humans
with machines, multimodal emotion recognition (MER) in conversations has been attracting great at-
tention from the research community. Argueta et al. [1] employed an unsupervised pattern extraction to
implement multilingual emotion classifier, Zhang et al. [2] proposed a hierarchical emotion structure
to classify emotions, and Vu et al. [3] researched the facial expression recognition task. The potential
applications of MER have been involving in many important and challenging tasks such as counseling,
dialogue generation, public opinion mining, financial forecasting, intelligent systems, and user behav-
ior understanding over chat history and social media threads on YouTube, Facebook, Twitter, and so
on [4,5]. One of the important applications is to create empathetic dialogue systems with emotional
understanding [6]. Previous research has considered dialogues as an essential basis of capturing the
emotional dynamics [7–9]. However, as the expressiveness of emotion varies widely from person to
person, analyzing and identifying emotional dynamics in conversations pose enormous challenges. There
are complex dependencies between the affective states of speakers participating in the dialogue [10]. In
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Fig. 1. An abridged dialogue from the IEMOCAP dataset. In this dialogue, PA’s emotion changes are influenced by the behavior
of PB .

this paper, we cope with the challenges of emotion recognition in conversational videos. Specifically, we
focus on utterance level (generally, a unit of speech bounded by breathes or pauses of the speaker) MER
in dyadic conversations that is a form of a dialogue between two entities.

We propose a novel model termed hierarchical memory networks (HMN). The novel of our model
is to distinguish the contexts of the test utterance and integrate different aspects of the contexts with
hierarchical memory networks. The emotional dynamics in a dyadic conversation is known to consist of
two main factors: self and inter-personal dependencies [11,12]. Self-dependencies also termed emotion
inertia, reflect the degree to which a person’s feelings carry over from one moment to another [13], or
in other words, involve the processes of emotional influence that speakers have on themselves during
conversations [14]. On the other hand, inter-personal dependencies refer to the emotional influences that
the other speakers induce into a specific speaker [4], as speakers may tend to follow the emotions of their
counterparts during the course of a dialogue [15].

Figure 1 presents a conversational example with these two traits of both self and inter-personal
dependencies. Although several existing works have capitalized on these two factors [4,5,10], they ignore
that different aspects of contexts of the test utterance in a conversation may have different weights.
In this study, we propose to differentiate the contexts. In other words, we consider different aspects
of the contexts should have different weights relevant to the test utterance. We mark these aspects as
ownHis, otherHis, ownFut, and otherFut and use different step lengths to represent the implicit weights
of these different aspects. First, HMN can generate different aspects of contexts of ut by collecting
corresponding utterances within different step lengths while classifying a particular utterance ut. Then,
HMN integrates these aspects with hierarchical memory networks. To model self-dependencies, these
aspects are independently modeled into local storage cells using local memory networks (GRUL cells).

Furthermore, to incorporate inter-personal dependencies, two global representations are generated using
two global memory networks (GRUG cells). These two representations are corresponding to historical
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contexts and future contexts. Specifically, one global memory network deals with historical contexts by
integrating the outputs of the local memory networks of both ownHis and otherHis aspects. The other
global memory network processes future contexts by integrating the outputs of the local memory networks
of both ownFut and otherFut aspects. The outputs of these two global memory networks are conveyed to
iterative memory networks (GRUM cells), followed by a multi-hops scheme that includes an attention
mechanism. The scheme can help to generate the contextual summaries of both the historical and future
contexts in the conversation. At each hop in the multi-hops scheme, the representation of the test utterance
can be improved with these contextual summaries. After H hops, the updated representation of utterance
ut is used to classify its emotion category. The experiments show the effect of our model on capturing
self and inter-personal dependencies.

The contributions of this paper can be summarized as follows:
– We propose a novel model HMN for emotion recognition. The model represents the weights of the

different aspects of contexts using different step lengths and integrates these aspects with hierarchical
memory networks. For MER of utterance level in a dyadic conversation, our model is effective in
capturing emotional dynamics and boosting accuracy.

– HMN captures the self-dependencies using four separate local memory networks, incorporates inter-
personal dependencies using two global memory networks, and conducts attention-based multi-hops
using two iterative memory networks. Besides, to obtain comprehensive features, all utterances of
conversational videos are represented with a multimodal approach that can resist the interference of
noise information.

– Experiments on benchmark dataset IEMOCAP show that HMN achieves competitive performance
in comparison with the baselines.

This paper is further structured as follows: Section 2 discusses the related work in this area of research;
Section 3 describes our proposed method in detail; Section 4 provides an experimental setup and reports
the result; Section 5 presents the discussion and analysis; Section 6 summarizes the conclusion and further
research directions.

2. Related work

Over the years, emotion recognition as an interdisciplinary field of research has obtained impetus
from researchers across various areas such as social psychology, cognitive science, natural language
processing, machine learning, and so on [16]. Ekman [17] conducted an initial finding between emotion
and facial expressions. Datcu and Rothkrantz [18,19] combined acoustic information with visual cues
in emotion modeling. Alm et al. [20] addressed the emotion recognition by adding the text-based
information, developed in the later work of Strapparava and Mihalcea [21]. Current research in emotion
recognition is mainly from a multimodal learning perspective [8,22]. A large number of previous works,
such as [23–28], have relied on multimodal fusion techniques that research emotion recognition from
a multimodal perspective. The fusion of modalities has exhibited excellent performances in affect
recognition systems [23,27,29,30], therefore stimulating to use of multimodal fusion. For processing
context-sensitive recognition, our proposed method also represents all the utterances in the videos with a
multimodal fusion approach.

Convolutional neural network (CNN) and recurrent neural network (RNN) are two widely used neural
networks, such as Liu et al. [31] proposed an Attention-Gated CNN for sentence classification, and Lu et
al. [32] utilized RNN for topic discovery. These applications also have been instrumental in the progress
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of the emotion recognition problem. Ebrahimi et al. [33] focused on a hybrid CNN-RNN architecture
for facial expression analysis. Poria et al. [29] successfully used RNN-based deep networks for MER,
followed by other researchers [26,28,34]. However, RNN is known to have difficulty in performing
memorization. Memory networks can efficiently capture long-term dependencies, thus solving this
problem [35–37]. As a storage mechanism and their storage cells being continuous vectors, memory
networks have been successfully applied in multiple research problems, including speech recognition [36],
question-answering [35,38–40], commonsense reasoning [41], and machine translation [42,43]. In the
emotional analysis, Kar et al. [44] employed memory networks to classify the perception of emotional
instances conveyed in facial expressions as well as to localize sources. Zadeh et al. [34] presented a method
of memory-based sequential learning for multi-view signals. Hazarika et al. used two distinct memory
networks to independently model context for each speaker [4], and employed local and global memory
networks to hierarchically model the self and inter-speaker emotional influences into memories [10].
Further, memory networks are often together with the attention modules and multi-hops mechanism to
improve the performance. In this study, we utilize both memory networks and attention-based multi-hops
to build our model.

Emotions play a pivotal role in shaping conversational interactions [45]. According to Poria et al. [9,
46,47], a conversational emotion recognition system can be used to generate appropriate responses by
analyzing the emotions. However, understanding emotional dynamics profoundly is a challenge for
machines. Several significant works have argued that emotional dynamics can be looked upon as an
interactive phenomenon, rather than being within-person and one-directional [48,49]. For capturing these
emotional dynamics, Yang et al. investigate the patterns of emotional transition properties [50], and
Xiaolan et al. employ finite state machines to model transitions [51] by observing stimuli and personality
properties. Besides, contexts play a significant role in emotional recognition. As a conversation is
a temporal event, the associated emotions of the participants’ utterances generally depend on their
conversational contexts. In other words, the contexts act as a set of parameters that can influence a person
to speak an utterance with an emotion [46]. Sun et al. [52] consider that contextual information of both the
surrounding environment and the human body can provide extra clues to recognize emotions accurately.
Metallinou et al. [53] point out that long-term temporal context is beneficial for emotion recognition
systems that encounter a variety of emotional manifestations. Unlike the above methods, our model first
distinguishes the contexts of the test utterance and then integrates these aspects with hierarchical memory
networks.

Our work is a follow-up of previous research [4] that used separate memory networks for both speakers
participating in a dyadic conversation. For the improvement, we employ four different step lengths based
local memory networks to capture the self dependencies and two global memory networks to model the
inter-personal dependencies. Through adopting such a scheme, HMN can effectively capture the contexts
surrounding the test utterance.

3. Methodology

In this section, we discuss our HMN model behind solving the MER problem.

3.1. Task definition

Let there be a set of asynchronous exchange of utterances between two persons Pa and Pb over time
in a dyadic conversation. We aim to predict the emotion labels (happiness, sadness, neutral, and anger)
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of utterances. With T utterances, U = {u1, u2, . . . , uT } denotes a totally ordered set based on temporal
occurrence, where ut is the tth utterance at time step t ∈ [1, T ]. The utterance representation ut is obtained
using the method of feature extraction described in Section 3.2.

For the aim of emotion classification, we utilize not only the test utterance at time t (i.e. ut), but
its surrounding contextual information. This contextual information includes four aspects (respectively
marked as ownHis, otherHis, ownFut, and otherFut). Each aspect separately collects the utterances
within its corresponding step length. Specially, we can distinguish individual utterances in U . Let
λ ∈ {ownHis, otherHis, ownFut, otherFut}, there is Uλ = {ui|ui ∈ U and ui(i 6= t) belongs to the
aspect of λ,∀i ∈ [1, |U |] and i 6= t}. In other words, each utterance ui(i 6= t) is among one of these four
aspects. Hence, we have U = UownHis

⋃
UotherHis

⋃
UownFut

⋃
UotherFut

⋃
ut. Further, we use different step

lengths, i.e., NownHis, NotherHis, NownFut, and NotherFut, to process these different sets (UownHis, UotherHis,
UownFut, UotherFut). Within these step lengths, four sets can be respectively constrained to UNownHis

ownHis , UNotherHis
otherHis ,

UNownFut
ownFut , and UNotherFut

otherFut .
We take a scheme of calculation direction that is starting from the oldest one for historical contexts and

starting from the farthest one for future contexts. Thus, if we are processing the preceding utterances,
λ1 ∈ {ownHis, otherHis}, UNλ1λ1

can be created as,

U
Nλ1
λ1

= {ui|i ∈ [t−Nλ1
, t− 1] andui ∈ Uλ1

} (1)

and if we are processing the upcoming utterances, λ2 ∈ {ownFut, otherFut}, UNλ2λ2
can be created as,

U
Nλ2
λ2

= {ui|i ∈ [t+ 1, t+Nλ2
] andui ∈ Uλ2

} (2)

Besides, at the beginning or the ending of the conversation, the number of utterances of each aspect
would have lesser than its corresponding step length. Hence we have the inequality as,

|UNλλ | 6 Nλ (3)

Where, λ ∈ {ownHis, otherHis, ownFut, otherFut}.
In the remaining sections, we explain our model using a subscript λ for brevity. This λ can instantiate

to ownHis, otherHis, ownFut or otherFut.
Table 1 demonstrates a sample conversation with different step lengths, NownHis = 10, NotherHis = 7,

NownFut = 6 and NotherFut = 3. ui is the ith utterance in U .

3.2. Multimodal feature data

We employ the identical feature data that is downloaded from the public website1 such that our model
can remain consistent with the prior research. The extraction procedures of feature data are briefly
described below [4].

A simple CNN with one convolutional layer is employed to extract the textual features from the
transcript of each utterance. Max-pooling [54] is operated on the output feature maps, followed by
rectified linear unit (ReLU) activation. These activations are concatenated and fed to a fully connected
layer, which is regarded as the textual utterance representation tu [4,10].

The open-sourced software open SMILE [55] can use to extract the audio features. Specifically,
the IS13_ComParE2 config file can provide 6373 features for each utterance. These features after the

1https://github.com/senticnet/.
2http://audeering.com/technology/opensmile.
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Table 1
Sample conversation U with test utterance ut = u16

Set symbol Set elements
U {u1, u2, u3, . . . , u23, u25, u26}
ut u16

UownHis {u2, u4, u6, u8, u10, u12, u14}
UNownHis

ownHis {u6, u8, u10, u12, u14}
UotherHis {u1, u3, u5, u7, u9, u11, u13, u15}
UNotherHis

otherHis {u9, u11, u13, u15}
UownFut {u18, u20, u22, u24, u26}
UNownFut

ownFut {u18, u20, u22}
UotherFut {u17, u19, u21, u23, u25}
UNotherFut

otherFut {u17, u19}

standardization are sent to a fully-connected layer to reduce the dimension, which generates the audio
feature vector au.

A 3D-CNN [56] is employed to capture the details of facial expressions and visual surroundings from
the utterance video. Then the outputs are sent to max-pooling followed by a fully connected layer, whose
activations of this layer form the video representation vu.

We obtain the final representation of an utterance by concatenating the above three multimodal features,
such as u = [tu, au, vu]. With this multimodal representation, all utterances in a conversation are
generated. Readers can refer to the literature [4,10] to obtain detailed information.

3.3. Hierarchical memory networks

In our model, we propose to differentiate the contexts of the test utterance. The surrounding contexts of
a test utterance ut should have different weights in different aspects. We mark these different aspects as
ownHis, otherHis, ownFut and otherFut, respectively. Each aspect contains its corresponding utterances
within its corresponding step length. With different step lengths in these different aspects, HMN attempts
to capture the different weights of different aspects relevant to the test utterance. Furthermore, we
separately model these different aspects. Although these four aspects are not necessarily independent,
separate modeling can help to improve the accuracy performance, which is validated by the experiment
results.

The overall process of HMN is as follows. We model different aspects of the contexts into local storage
cells by employing separate local memory networks (GRUL cells). For ownHis and otherHis aspects,
the outputs of their corresponding local memory networks are sorted based on time occurrence order.
The sorted sequence is sent to the global memory network (GRUG cells), which is to incorporate the
inter-personal dependencies of historical contexts. The output of the global memory network is conveyed
to the attention block to perform an attention mechanism, resulting in weighted contextual information
relevant to the test utterance. The weighted information is merged with the test utterance using an addition
operation. Besides, the output of the global memory network is the input of the storage read/write module
that conducts a multi-hops scheme. In the iterations, the iterative memory network (GRUM cells) produces
new storage cells. For ownFut and otherFut aspects, the outputs of their corresponding local memory
network (GRUL cells) are sorted in reverse chronological order. The rest of the process is the same as
ownHis and otherHis aspects. After H hops, the final emotion representation of ut is used to predict the
classification of emotions. Figure 2 demonstrates the architecture of our model.

In the following, we first define the GRU cell; Then, present the computations of Local dependencies
and Global dependencies, followed by Multiple hops storage and Final prediction.
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Fig. 2. Illustration of HMN. Input conversation is as presented in Table 1.

3.3.1. Gated recurrent unit
The GRU is introduced by Cho et al. [57]. It is a simpler gating mechanism with similar computation

performance with respect to the LSTM [58] in RNN. At any time step i of a temporal sequence, the GRU
uses two gates, ri (reset gate) and zi (update gate), to control the combination criteria with the ith input ui
and previous state si−1. The computations are:

zi = σ(V z · ui +W z · si−1 + bz) (4)

ri = σ(V r · ui +W r · si−1 + br) (5)

hi = tanh(V h · ui +W h · (si−1 ⊗ ri) + bh) (6)

si = (1− zi)⊗ hi + zi ⊗ si−1 (7)



1038 H. Lai et al. / MER with HMN

In the above equations, V and W are parameter matrices, and b is a parameter vector. ⊗ represents
element-wise multiplication.

3.3.2. Local dependencies
The module is to model self dependencies. As the contexts of the test utterance are divided into four

aspects, we employ four separate local memory networks (GRUL cells) to model these different aspects
into local storage cells. The computations of these aspects are as follows.

For ownHis aspect, the utterances in UNownHis
ownHis are framed as a sequence (starting from the oldest one)

and fed to the local memory network (GRUL cells for ownHis aspect). The output is marked as M (L)
ownHis.

For otherHis aspect, the utterances in UNotherHis
otherHis are framed as a sequence (starting from the oldest one) and

fed to the local memory network (GRUL cells for otherHis aspect). The output is marked as M (L)
otherHis.

For ownFut aspect, the utterances in UNownFut
ownFut are framed as a sequence (starting from the farthest one) and

fed to the local memory network (GRUL cells for ownFut aspect). The output is marked as M (L)
ownFut. For

otherFut aspect, the utterances in UNotherFut
otherFut are framed as a sequence (starting from the farthest one) and

fed to the local memory network (GRUL cells for otherFut aspect). The output is marked as M (L)
otherFut.

3.3.3. Global dependencies
The module is to capture inter-personal dependencies. We use two different global memory networks

(GRUG cells) to incorporate the inter-personal dependencies of both historical contexts and future
contexts. For ownHis and otherHis aspects of historical contexts, the outputs of their corresponding local
memory networks are sorted based on time occurrence order. The sorted sequence is sent to global memory
network (GRUG cells for historical contexts), which is to incorporate the inter-personal dependencies
of historical contexts. The output of this global memory network is marked as M (1)

gHis. For ownFut and
otherFut aspects of future contexts, the outputs of their corresponding local memory networks are sorted
in reverse chronological order. The sorted sequence is sent to global memory network (GRUG cells for
future contexts), which is to incorporate the inter-personal dependencies of future contexts. The output of
this global memory network is marked as M (1)

gFut.

3.3.4. Multi-hop storage
Several recent works [35,40] consider that multiple read/write iterations are important for performing

transitive inference. Multiple hops can help in improving the focus of attention heads that may miss
essential memories in a single hop. Inspired by this, we conduct a series of H storage read/write cycles
that are combined with an attention mechanism.

At the hth hop, to find the relevance of each storage cell with the test utterance ut, an attention
mechanism is respectively performed on the storages M (h)

gHis and M (h)
gFut. The calculations are:

W
(h)
gHis = softmax((M (h)

gHis)
T · q(h)t ) (8)

W
(h)
gFut = softmax((M (h)

gFut)
T · q(h)t ) (9)

Where, softmax(xj) = exj/
∑

k e
xk . Initially, q(1)t = B · ut (e.g., ut = u16, q(1)t = q

(1)
16 in Fig. 2).

The attention vector W (h)
gHis is a probability distribution over the storage M (h)

gHis. The attention vector
W

(h)
gFut is a probability distribution over the storage M (h)

gFut. The jth normalized score of W (h)
gHis or W (h)

gFut
can indicate the relevance of jth storage cell with respect to the test utterance. These storages and their
attention vectors are then used to find weighted storage representations with an inner product operation as
follow:
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weightedM(h)
gHis =M

(h)
gHis ·W

(h)
gHis (10)

weightedM(h)
gFut =M

(h)
gFut ·W

(h)
gFut (11)

Each representation contains a weighted contextual summary that is accumulated from the correspond-
ing storage. We add these two weighted storage representations weightedM(h)

gHis and weightedM(h)
gFut to test

utterance q(h)t as:

q
(h+1)
t = q

(h)
t + weightedM(h)

gHis + weightedM(h)
gFut (12)

Futher, we employ the two iterative memory networks (GRUM cells), to update the storages for the next
hop. These two networks take the hth storages weightedM(h)

gHis and weightedM(h)
gFut as inputs respectively.

The computations are:

weightedM(h+1)
gHis = GRUM (weightedM(h)

gHis) (13)

weightedM(h+1)
gFut = GRUM (weightedM(h)

gFut) (14)

After H hops, the final representation q(H+1)
t is sent to the final prediction.

3.3.5. Final prediction
In this step, a softmax function is used to calculate emotion-class probabilities from the final emotion

representation q(H+1)
t of utterance ut using the equation as:

Pt = softmax(Wsmax · (q(H+1)
t ) + bsmax) (15)

Then, the predicted label for utterance ut is picked as:

ŷ = argmax
a

(Pt[a]) (16)

For classification training, categorical cross-entropy loss along with L2 regularization is used as the
cost measure:

Loss =
−1∑N

k=1 c(k)

N∑
i=1

c(i)∑
j=1

(yi,j) log2 Pi,j + δ ‖ θ ‖2 (17)

Here, N is the total number of dialogues, c(i) is the number of utterances in the dialogue i, Pi,j is the
probability distribution of emotion labels for utterance j of dialogue i, yi,j is the expected class label of
utterance j of dialogue i, δ is the L2-regularizer weight, and θ is the set of trainable parameters.

Algorithm 1 summarizes the overall HMN.

4. Experiments

4.1. Dataset details

We perform experiments on dataset: IEMOCAP [59].3 This dataset is regarded as a dialogue-based
emotion detection benchmark and provides rich multimodal samples for all the utterances. There are

3https://sail.usc.edu/iemocap/.
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Algorithm 1 Hierarchical Memory Networks

Input: ut, UNλλ , H
Output: Pt
1: q(1)t = B · ut
2: for λ in [ownHis, otherHis, ownFut, otherFut] do
3: M

(L)
λ = GRUL(UNλλ )

4: end for
5: M (L)

ownHis and M (L)
otherHis are sorted into a sequence seqHis based on time occurrence order

6: M (L)
ownFut and M (L)

otherFut are sorted into a sequence seqFut in reverse chronological order
7: M (1)

gHis = GRUG(seqHis)

8: M (1)
gFut = GRUG(seqFut)

9: for h in [1,H+1] do
10: W

(h)
gHis = softmax((M (h)

gHis)
T · q(h)t )

11: weightedM(h)
gHis =M

(h)
gHis ·W

(h)
gHis

12: M
(h+1)
gHis = GRUM (M

(h)
gHis)

13: W
(h)
gFut = softmax((M (h)

gFut)
T · q(h)t )

14: weightedM(h)
gFut =M

(h)
gFut ·W

(h)
gFut

15: M
(h+1)
gFut = GRUM (M

(h)
gFut)

16: q
(h+1)
t = q

(h)
t + weightedM(h)

gHis + weightedM(h)
gFut

17: end for
18: return Pt = softmax(Wsmax · (q(H+1)

t ) + bsmax)

12 hours of dyadic conversational videos, which are grouped into five sessions. These sessions are split
into 5 minutes of interaction between pairs of 10 unique speakers (5 male and 5 female), with each pair
assigned to diverse multiple conversation scenarios for dialogues. All the conversations are segmented
into spoken utterances, with each utterance being tagged by at least 3 annotators with one of the labels:
anger, happiness, sadness, neutral, excitement, frustration, fear, surprise, and other. In this study, we
consider the first four categories with majority agreement (i.e., at least two out of three annotators labeled
the same emotion) to compare with the baseline models. Readers can refer to the literature [59,60] for
obtaining a more detailed description of the dataset.

4.2. Training details

As each individual has a unique way of expressing emotions, it is necessary to perform person
independent experiments to test our method. The IEMOCAP dataset is partitioned into train and test
sets with roughly 80/20 ratio such that the partitions do not share any speaker. For hyper-parameters
tuning, 20% of the train set is further used as a validation set. For optimization of the parameters, the
Adam [61] optimizer is used to train our network. Through monitoring the validation loss, the training
phase stops with the patience of 10 epochs. The Dropout [62] and Gradient-clipping for a norm of 40
are used to regular the network. Hyper-parameters are decided using random search [63]. Finally, step
length of NownHis, NotherHis, NownFut and NotherFut are respectively set to be 28, 17, 13, and 6. The number
of hops H is fixed at 3. The embedding dimension size Rd is set as 50.

4.3. Baselines

We compare HMN with the following baseline methods.
– Tripathi et al. [64] exploits the effectiveness of neural networks to perform MER on the IEMOCAP
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Table 2
Comparison of HMN in terms of
accuracy with the baseline methods
for IEMOCAP dataset

Models Accuracy
Tripathi et al. [64] 71.04
bc-LSTM [29] 76.1
CHFusion [23] 76.8
CMN [4] 77.6
HMN 79.64

dataset using data from speech, text, and motions captured from facial expressions, rotation, and
hand movements. Their neural networks are adept at estimating complex functions that depend on a
large number and diverse source of input data.

– bc-LSTM [29] has two unidirectional LSTMs stacked together with opposite directions that are used
to model the contexts from the neighboring utterances into the utterance representation, making each
utterance can get information from utterances occurring before and after itself in the video.

– CHFusion [23] presents a hierarchical feature fusion strategy that first fuses the modalities two in two
and only then fuses all three modalities. In their method, RNN, specifically GRU, is alternately used
to extract context-aware utterance features in the processes of bimodal combination and trimodal
combination.

– CMN [4] uses two distinct GRUs for two speakers to capture the separate contexts from dialogue
histories. These contexts are stored as memories after performing an attention mechanism. These
memories are merged with the test utterance using an addition operation. Further, the multiple hops
operation is used to improve the merged representation.

However, bc-LSTM, Tripathi et al., and CHFusion do not distinguish the speakers in the conversations;
CMN does not consider the weights of different aspects of contexts.

4.4. Results

For the performance comparison, we perform experiments on the IEMOCAP test set. Table 2 summa-
rizes the results. The results of other methods in the table are all from the literature. We use Accuracy to
evaluate classification performance. As shown in Table 2, our model HMN outperforms the compared
models with significant classification performance increase in Accuracy ranging from 2.0% to 8.6%. It
suggests that the HMN model is more capable of capturing the contextual information from surrounding
utterances using our proposed modeling scheme.

5. Discussion and analysis

5.1. Hyperparameters

To avoid a combinatorial explosion, we consider a random search to set the values of NownHis, NotherHis,
NownFut and NotherFut. The experiments verify our hypothesis that the surrounding contexts of a test
utterance ut should be differentiated. Based on the experimental results, we set the value of NownHis = 28,
NotherHis = 17, NownFut = 13, and NotherFut = 6. When fixing these values, we concern the performance
trends of HMN on the IEMOCAP dataset with two hyperparameters, H (number of hops), and Rd

(embedding dimension size). Table 3 provides a summary of the performance trend of our model for
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Table 3
Performance trends of HMN
with different number of hops

H Accuracy F1
1 77.94 77.86
2 75.72 75.62
3 79.64 79.64
4 74.97 74.85
5 78.26 78.22
6 70.52 69.99
7 61.82 58.14
8 69.25 68.71
9 63.20 63.10

10 60.66 60.72
11 52.70 48.23
12 53.55 49.39
13 49.20 44.96
14 57.16 53.79
15 54.08 49.42
16 41.25 36.28

Table 4
Performance trends of HMN
with different embedding di-
mension sizes

Rd Accuracy F1
30 73.17 72.43
40 74.87 74.62
50 79.64 79.64
60 78.79 78.60
70 75.40 75.20
80 78.47 78.48

Table 5
Comparison of the performance of HMN on
IEMOCAP in different modalities

Modality Accuracy F1
Unimodal text (T) 75.50 75.32
Unimodal audio (A) 64.58 64.60
Unimodal visual (V) 44.43 44.13
Trimodal (T+A+V) 79.64 79.64

different values of the hyperparameter H . With H increasing, the performance initially improves because
more weighted storages are added to the test utterance. However, with hopping recurrence deepens, the
total parameters also increase, and the overfitting happens. We obtain the best performance at H = 3 in
our experiments. In Table 4, the similar trends are observed where the performance initially improves
by increasing the embedding dimension size Rd. However, with a further increase of this embedding
dimension size, the performance decrease for saturation. Finally, the best performance is obtained at
Rd = 50 in our experiments.

5.2. Importance of the modalities

As we know, the multimodal analysis outperforms the unimodal analysis, which has been already



H. Lai et al. / MER with HMN 1043

established in the literature [65,66]. We also observe the same trend in our experiments. The textual
modality is the strongest individual modality and performs best among others, which is aligned with
our expectations. Although other modalities contribute to improving the performance of multimodal
classifiers, the contribution is little compared to the textual modality. All above is reaffirming the
significance of textual modality in multimodal systems. Table 5 summarizes the comparison of the
performance of HMN on IEMOCAP in different modalities.

6. Conclusion

In this work, we have developed HMN for MER in dyadic conversational videos. Our HMN is to
distinguish the contexts of a test utterance and uses different step lengths to represent the weights of
different aspects of contexts. Besides, HMN leverages hierarchical memory networks to integrate these
aspects so that it can capture the self and inter-personal dependencies. With the attention mechanism
and multiple hops mechanism applied to HMN, adequate contexts can be generated, thus improving the
representation of the test utterance and helping to boost accuracy performance. Our experimental results
confirm the performance of HMN with such a modeling scheme. In the future, we plan to explore the
setting of the values of the step lengths in different aspects and to improve the quality of multimodal
feature data.
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