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ABSTRACT Balancing model size, segmentation accuracy, and inference speed is a key challenge in image
semantic segmentation. This paper introduces a novel lightweight semantic segmentation network, CAC-
Net (Class-Aware Context Network), featuring the innovative Class-Aware Context Enhancement Module
(CACEM). CACEM is designed to explicitly intertwine category and context information, addressing the
shortcomings of traditional convolutional networks in capturing and encoding inter-category relationships.
It operates by normalizing pixel probability distributions via softmax, mapping pixels to categories, and
generating new feature maps that accurately encapsulate these relationships. Additionally, the network
utilizes multi-scale context information and employs dilated convolutions, followed by upsampling to blend
this context with single-channel category information. This process, enhanced by Fourier adaptive attention
mechanisms, allows CACNet to capture intricate feature structures and manipulate features in the frequency
domain for improved segmentation accuracy. On the Cityscapes and CamVid datasets, CACNet demonstrates
competitive accuracies of 70.8 and 74.6 respectively, with a compact model size of 0.52M and an inference
speed over S8FPS on GTX 2080Ti GPU platform. This blend of compactness, speed, and accuracy positions
CACNet as an efficient choice in resource-constrained environments.

INDEX TERMS Semantic segmentation, class-aware context enhancement module, statistical multi-branch
convolution network, Fourier adaptive attention mechanism.

I. INTRODUCTION

Semantic Segmentation involves assigning semantic labels
to every pixel in an image, creating a semantically rich
image. With the advent of deep learning techniques, deep
learning-based semantic segmentation algorithms [1], [2]
have progressively replaced traditional algorithms, enhanc-
ing segmentation accuracy significantly. The advancement
of deep learning frameworks, coupled with the increase in
GPU computing power, has allowed for the development
of deeper neural network layers. This has significantly bol-
stered the learning and generalization capabilities of the
models, thereby markedly improving the accuracy of seman-
tic segmentation models. However, as the network layers
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increase, the quantity of model parameters and computa-
tion also escalates rapidly, posing challenges for model
deployment in resource-constrained devices such as auto-
mobiles, mobile phones, and robots. In driving scenarios,
to ensure that the driving system can promptly identify poten-
tial road safety hazards, the inference speed of the semantic
segmentation model must meet real-time requirements [3].
Although deep learning-based semantic segmentation mod-
els can achieve satisfactory results in terms of accuracy,
they often overlook the numerous limitations of computa-
tional and storage resources during the deployment process,
which hampers the application of semantic segmentation
algorithms in engineering practice. Therefore, the develop-
ment of semantic segmentation models that simultaneously
meet the needs of segmentation accuracy, model size, and
inference speed has become a problem that an increasing

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

144722

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0009-0000-2571-1552
https://orcid.org/0000-0003-3835-1079

X. Xu et al.: Lightweight Semantic Segmentation Network

IEEE Access

number of researchers are focusing on. Recent advancements
in this field have seen the emergence of lightweight models,
such as SqueezeNet [25] and MobileNet [10], which are
specifically designed to be efficient in terms of computational
resources while maintaining reasonable accuracy. Moreover,
accelerated strategies like quantization [26] and network
pruning [27] have been proposed to further optimize the infer-
ence speed and model size, making them more suitable for
deployment in resource-constrained environments. However,
these methods often involve trade-offs between accuracy and
efficiency, highlighting the complexity of achieving an opti-
mal balance.

The existing lightweight models have made significant
strides in processing efficiency and storage management.
However, these models still face certain limitations when
dealing with complex semantic segmentation tasks, par-
ticularly in capturing and encoding intricate relationships
between categories. Often prioritizing the reduction of
parameter count and computational complexity, these models
may compromise the precise capture of contextual infor-
mation and inter-category interactions. To overcome these
limitations, we designed CACNet (Class-Aware Context Net-
work), aiming not only to enhance computational and storage
efficiency but also to improve the precision of semantic seg-
mentation and the utilization of contextual information while
maintaining a lightweight framework. Guided by multi-level
context information as a priori, it optimizes the segmentation
results of each category of targets. The experiment demon-
strates that this module further significantly improves the
model segmentation accuracy. The segmentation accuracy of
CACNet on the urban landscape dataset reached 70.2%, the
model parameters were only 0.53M, and the inference speed
reached 58FPS, meeting real-time requirements. The main
contributions of this research are as follows:

(1)Designing the Statistical Multi-Branch Convolution
Network (SMBCN) as the backbone network. This network
balances the advantages of multi-branch and single-branch
network structures, reducing the complexity of the model and
improving the segmentation accuracy of the model.

(2)Proposing a novel Class-Aware Context Enhancement
Module, which explicitly fuses class information and context
information together. This module can better represent the
relationship between classes and improve the segmentation
accuracy of the model. The module designs a Fourier adaptive
attention mechanism to process features in the frequency
domain, which can more finely control various components in
the features, thereby enhancing the performance of the model.

(3)The CACNet model has achieved superior performance
compared to existing methods on the Cityscapes and CamVid
datasets.

Il. RELATED WORKS

A. DEEP LEARNING-BASED SEMANTIC SEGMENTATION
Within the computer vision domain, convolutional neural
networks (CNNs) [2] have become an essential tool due to
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their suitability in local feature extraction, which is partic-
ularly advantageous given the distinct structure of image
data. The introduction of the fully convolutional neural net-
work (FCNN) [4] marked a significant milestone, pioneering
the use of CNNs in end-to-end training for image semantic
segmentation tasks. Subsequent deep learning-based image
semantic segmentation methodologies have largely drawn
upon the design principles of the FCNN, making incremental
improvements in areas such as basic convolution modules,
output modules, and feature extraction modules. UNet [5],
PSPNet [6], CCNet [7], and the Deeplab [8] have become
important benchmark models in the field of image semantic
segmentation. In DeepLab [8], deep convolutional neural
networks are combined with probabilistic graphical models
(CRF), and the use of fully connected CRFs allows for the
capture of global information in images, thereby enhancing
segmentation precision. DeepLab v2 [28] adopts atrous con-
volution, expanding the receptive field of the convolution
kernel. DeepLab v3 [29] and DeepLab v3+ [30] abandoned
probabilistic graphical models in favor of the ASPP module,
achieving end-to-end training and testing with deep learning.
DeepLab v3+ made several innovations and improvements
to the ASPP module.

In recent years, the computer vision landscape has seen
Visual Transformers increasingly outperform earlier CNNs in
tasks such as image classification and object detection. They
have also shown promise in semantic segmentation tasks [9],
though some limitations persist. The need to partition the
image into smaller blocks for processing with Transformers
can inhibit the acquisition of precise segmentation results,
as the network is essentially predicting a sequence of image
blocks instead of directly predicting pixels. Furthermore,
due to architectural constraints, Transformer models typically
possess parameters in the order of hundreds of megabytes,
a scale far from the lightweight networks.

Although existing deep learning-based semantic segmenta-
tion models have greatly improved in accuracy, the problems
of high computational load and a large number of parame-
ters persist. This hinders real-time processing of the models
and complicates deployment on mobile platforms. Therefore,
research on real-time semantic segmentation networks has
become a focal point.

B. LIGHTWEIGHT MODELS

Aiming for efficient model deployment and real-time applica-
tion, researchers have proposed several lightweight real-time
semantic segmentation networks. These often employ decom-
posed convolution and depthwise separable convolution [10]
as replacements for standard convolution, thus reducing
parameter count and computational load. The depth and
width of the network are meticulously regulated to avoid the
substantial computational burden that originates from oper-
ating multi-channel feature maps and convolution kernels.
To counteract the decreased learning capability and general-
ization due to the reduced model parameters, these networks
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necessitate carefully engineered basic modules. Depending
on their structure, lightweight semantic segmentation net-
works can be categorized as either single-path or multi-path.

Single-path networks entail one input end, where the
image, once fed into the network, follows a single path until
it reaches the output end. A representative of this type is
the ENet [11], which features a lightweight design expressed
in three facets: (1)Restricting the number of feature map
channels to a maximum of 128, hence reducing the number of
convolution kernels and computational requirements during
inference; (2)Applying three downsampling operations in
the initialization module and the front end of the encoder
to rapidly diminish the feature map’s resolution, thereby
minimizing computational requirements during inference;
(3) Employing decomposed convolution instead of standard
convolution to further decrease the number of parameters.
ERFNet [12], LEDNet [13], STDC [32], and NDNet [14]
have developed unique approaches in single-path network
design, further enriching the landscape. Moreover, certain
studies have elaborately discussed the new backbone and
attention Module, offering fresh perspectives for designing
lightweight model structures [33], [34].

On the other hand, multi-path networks have multiple
inputs, where the input image is simultaneously processed
through multiple paths, which are then merged and outputted
as a segmentation result. Examples of such networks include
BiSeNet [15], ContextNet [16], ICNet [17], and BiSeNet
V2 [31]. These multi-path networks use distinct path depths
to extract different levels of image features, leveraging the
advantages of each depth for improved accuracy and detail
recognition.

In sum, both single-path and multi-path lightweight seman-
tic segmentation networks present unique methodologies and
innovations, thus contributing to advancements in the field of
computer vision and semantic segmentation. Nonetheless, the
quest for the optimal balance between accuracy and compu-
tational efficiency continues [19], [20].

Current lightweight semantic segmentation models,
despite being designed for efficiency and reduced compu-
tational costs, face certain limitations when dealing with
more complex semantic segmentation tasks. The primary
issues with these models pertain to two aspects: (1) Insuf-
ficient capture of inter-class relationships: While optimized
for parameter count and computational complexity, these
models often overlook the precise capture of complex inter-
class relations, which is crucial for the accuracy of semantic
segmentation tasks. (2) Inadequate utilization of contextual
information: In the effort to reduce computational resources,
these models may compromise on the in-depth use of
contextual information, which is particularly important for
semantic segmentation in scenes with complex backgrounds
and diverse settings. To address the aforementioned issues,
we have designed the Class-Aware Context Network (CAC-
Net). The core idea of CACNet is to integrate a Class Aware
Context Enhancement Module(CACEM) with a Statistical
Multi-Branch Convolutional Network (SMBCN), aiming to
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overcome the limitations of existing lightweight models and
further improve the accuracy of semantic segmentation.

ill. METHODOLOGY

A. OVERALL MODEL ARCHITECTURE

In the realm of semantic segmentation networks, the role
of the top layer, the classifier, is to amalgamate the deep
features learned via the convolutional network and to produce
pixel-wise prediction outcomes. Contrary to the output of
typical convolutional layers within the network, the output
of the classifier signifies not only the segmentation result
but also a feature map whose channels equal the number of
classes, where each pixel point contains explicit class infor-
mation [21]. In an endeavor to extract context information
from intermediate feature maps, it is common to employ
strategies for expanding the receptive field and for learning
multi-scale features. By performing convolution operations
to combine multiple local features, the resultant feature map
amalgamates a plethora of context information to attain accu-
rate segmentation. Nevertheless, considering that the feature
maps yielded by the intermediate convolutional layers are
not the final classification results, despite each pixel point
amalgamating abundant information, the interpretation of
this information remains unclear. In certain cases, this may
lead to misdirection of the segmentation outcome. To make
better use of the context information contained in the fea-
ture map, we can utilize purer class information to steer the
context information, thereby providing the network with a
more unambiguous learning direction. In pursuit of enhanc-
ing the model’s segmentation outcomes directly, this work
introduces the Class Aware Context Enhancement Module
(CACEM), and designs a novel lightweight semantic seg-
mentation network termed CACNet (Class Aware Context
Network) on the basis of this module. By optimizing the
output of the classifier on a channel-by-channel, class-by-
class basis using the rich context information present in the
network’s high-level features, the learning objectives of the
model become more focused.

Figure 1 provides a schematic representation of the
CACNet network structure, demonstrating its asymmetric
encoder-decoder architecture. The convolutional layers con-
stituting the encoder comprise convolutional modules formed
by the alternative stacking of dilated and decomposed con-
volutions. The input image, subjected to three successive
downsampling operations, yields a resolution reduced to
one-eighth of its original value. Concurrently, the number of
channels progressively escalates to 16, 64, and 128, respec-
tively.

As the depth of the encoder network increases and the
number of channels amplifies, the information encompassed
within the output feature map likewise expands. Furthermore,
the range of adjacent pixel context information aggregated
by each pixel point broadens. Consequently, the first context
branch is derived from the deeper layer of the encoder net-
work.
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FIGURE 1. Schematic of CACNet network structure. The architecture features an input image processed by the statistical
Multi-Branch convolutional network (SMBCN), which reduces dimensionality through sequential convolutions. The
resulting features are refined and upsampled before being enhanced by the Class-Aware context enhancement module
(CACEM) for semantic segmentation, leading to the final segmented output.
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FIGURE 2. Structure of the statistical multi-branch convolution network. The input feature
map | is divided into K branches. Each branch processes through a series of convolutions,
reducing the channel dimensions successively and producing intermediate feature maps
X1, X2....X . The exact shapes of these intermediate features x; through x, are detailed in
Table 1, showing the dimensionality reduction at each convolutional step. These feature
maps are subsequently integrated using a statistical module to compute the final output
feature map O that delivers enhanced segmentation detail and accuracy.

The second branch emanates from the first upsampling
module of the decoder. Utilizing the feature map from this
branch proffers two advantages: 1) the introduction of the
feature fusion module within the first upsampling module
yields output features with more discernible edge details,
and 2) the feature map of the initial upsampling exhibits a
degree of channel compression. Given that the resolution of
the feature map is not excessively high, the computational
load it imparts is relatively manageable, striking a balance
between detail and efficiency.
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B. BACKBONE NETWORK BASED ON STATISTICAL
MULTI-BRANCH CONVOLUTIONAL NETWORK
Addressing the issue of large model sizes prevalent in
multi-branch network structures and low segmentation pre-
cision inherent in single-branch network structures, this
work presents a statistical multi-branch convolution network
(SMBCN) as the backbone network.

The Statistical Multi-branch Convolution Network
(SMBCN) begins processing the input feature map /, which
has dimensions 3 x H x W, by dividing it into K distinct
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branches for parallel processing. The processing methods
for different branches are identical, using the same layers
and parameters (such as kernel size, stride, padding, etc.)
in their design. Even though each branch performs similar
operations, they can process different parts of the feature map
simultaneously. This parallel processing allows for increased
efficiency and diversity in feature extraction while maintain-
ing a moderate model size. Moreover, although each branch
performs similar operations, they can focus on features of
different scales or types. This multi-scale feature representa-
tion is crucial for enhancing the detail and accuracy of image
segmentation.

Focusing on a single branch as an example, the transforma-
tion begins with a 1 x 1 convolution that contracts the channel
dimension from C to C/2, thus producing an intermediate
feature map xi1. This map is further processed by a series of
two 3 x 3 convolutions, which sequentially reduce the number
of channels first to C/4, resulting in xi>, and subsequently
to C/8, creating x;3. The final step in the branch involves a
3 x 3 convolution that maintains the channel dimension at
C/8, completing the series of transformations for this branch
with x;. The operations for each branch can be described by
the following equations:

xk1 =6 (B (wk1 1)) ()
Xk2 = 8 (B (Wk2 * Xk1)) (2)
xr3 = 8 (B (Wk3 * xx2)) 3)
Xk =8 (B (W * xx3)) )

where § is the ReLU activation function [22], 8 is batch
normalization [23]. Each branch’s convolutional operations
are designed to capture a range of features from the input,
providing a rich, multi-scale feature representation.

Following the short-term dense concatenate, each branch’s
feature map x; is concatenated in the statistical integration
module. This module processes the features from all branches
to produce the final output feature map O, which is then used
for precise semantic segmentation. Within the statistical inte-
gration module, we employ mean pooling, variance pooling,
and max pooling submodules to calculate the mean, variance,
and max values of the series x1, x2,. .., xg respectively. Upon
concatenating these three results, the final output feature O is
obtained:

O = Concat[p, 0%, m) 5)
The formula of the mean pooling submodule is:
| X
n= e D% 6)
k=1
The formula of the variance pooling submodule is:
1 X
ol =2 > (k= w)? ™
k=1
The formula of the max pooling submodule is:
m= maka: 1 Xk (3)
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TABLE 1. Detailed parameters of SMBCN.

Layer Input Size Output Size Number of
Parameters
Input 3x1024x512 3x1024x512 0
Branch operation 3x1024x512 K branches, each 0
branch size is
3x1024x512
K branches, each 3x1024x512 K branches, each (113*16+1
branch size is branch size 6)
is16x512x256
3x3 Convolution 16x512x256 K branches, each  (3316*64+
(Reducing to C/4) branch size 64)
is64x256x128
3x3 Convolution 64x256x128 K branches, each  (3364*128
(Reducing to C/8) branch size +128)
is128x128x64
3x3 Convolution 128x128x64 K branches, each ~ (33128*12
(Channel number branch size 8+128)
remains the same) is128x128x64
Statistical K branches, 128x128x64 0
Integration each branch
Module size

is128x128x64

The design ethos underlying the SMBCN backbone net-
work is encapsulated by four core characteristics: (1) The
network navigates features in a wider space by allow-
ing each branch’s convolution operation to have diverse
parameters, thereby enabling the network to probe features
within a larger space. (2) Through the statistical integration
module, the network extracts a greater quantity of useful
features, by statistically analyzing the results of multi-branch
convolution operations, thus enhancing the network’s repre-
sentation capability and image segmentation precision. (3)
The network maintains a moderate size, circumventing the
issues of low segmentation precision characteristic of original
single-branch network structures, and the problem of large
model sizes inherent in original multi-branch network struc-
tures. (4) The network augments the model’s segmentation
accuracy by harnessing the statistical integration module to
extract more beneficial features, thereby bolstering the net-
work’s representational power and the precision of image
segmentation.

Table 1 provides a detailed description of the SMBCN
backbone network.

C. CLASS-AWARE CONTEXT ENHANCEMENT MODULE
(CACEM)

In semantic segmentation tasks, the fusion of context infor-
mation and category-specific details is vital. Traditional
convolutional neural networks, however, face a significant
challenge—they lack an explicit mechanism for capturing
and encoding inter-category relationships, leading to an out-
put feature map that does not explicitly differentiate between
categories.

To address this limitation, we propose the Class-Aware
Context Enhancement Module (CACEM), which is engi-
neered to intertwine category and context information
explicitly. The CACEM operates by first normalizing the
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FIGURE 3. Schematic diagram of CACEM Module. The diagram showcases the CACEM in action, processing multi-scale context information
through adaptive weight learning for each category to generate category-specific feature maps. These are then integrated and upsampled to
produce a semantically enriched segmentation output, demonstrating CACEM'’s capability for enhancing segmentation accuracy by leveraging

category-discriminative features.

probability distribution of each pixel’s network output via
the softmax function, mapping each pixel to its respective
category based on the derived probability distribution. Each
category’s pixels utilize the associated feature map as input,
and this input is subsequently processed through a compact
convolutional network to yield a new feature map that more
accurately encapsulates inter-category relationships. Such a
strategy permits better utilization of category information,
thus enhancing the model’s segmentation accuracy.

As depicted in Figure 3, let us assume a current clas-
sification task consisting of N categories. The preliminary
segmentation outcomes of the classifier output are bro-
ken down into N single-channel feature maps. Since each
pixel’s category is determined by the index of the maxi-
mum value along the channel dimension, every segmentation
result channel contains information for a single category.
By employing these single-channel feature maps replete with
category information, the model is guided to extract more
targeted information from the context, specifically, informa-
tion that contributes to accurate classification of the current
category.

To access multi-scale context information, multi-level fea-
tures are extracted from the backbone network. Dilated
convolution is subsequently employed to further encode these
features, which are then upsampled to match the resolution
of the category information. The result is divided into N
branches and combined with the N single-channel features
possessing category information. Through adaptive weight
learning, this procedure outputs the enhanced segmentation
result for the current category. Finally, N enhanced feature
maps are generated, representing the segmentation result.
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Let’s assume the output of the segmentation model is a
tensor O of shape H x W x N, where H and W represent the
image’s height and width, and N is the number of categories.
The category of each pixel is derived via the argmax function:

O’ = argmax (O,axis = 2) 9)

Subsequently, O’ is expanded into N binary maps, each
representing a unique category. Let O; denote the binary map
of the i-th category:

0;=0 ==i (10)

This equation produces a binary map O; in which only
pixels of category i are marked as 1, while all other pixels
are assigned a value of 0.

Assuming the output of the backbone network is a list, with
each element being a feature map F; of shape H; x W; x C;.
A dilated convolution operation is performed on feature Fj,
followed by an upsampling to match the resolution of O;:

Fl-/ = Upsample (DilatedConv (F;)) (11

Subsequently, for each category i, we integrate its cor-
responding binary map O; and feature map F;’ through
concatenation:

Z; = Concat (0;, F}) (12)

Z; is then processed via an adaptive weight learning module
to derive the enhanced feature map E;. To thoroughly inte-
grate the features corresponding to each category, we utilize
the Fourier transform to convert features from the spatial to
the frequency domain. This conversion facilitates the cap-
turing of patterns of varying scales and orientations on a
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FIGURE 4. Visualization of car category segmentation and feature activation. The figure
contrasts semantic segmentation results with the activation maps for the car category,
illustrating the Class-Aware context enhancement module (CACEM)’s accuracy in
segmenting and highlighting cars within the images.

global scale, thereby enriching the understanding of complex
structures in the image. The rationale for this approach is that
high-frequency components signify details and boundaries
in the image, while low-frequency components depict global
and smooth parts of the image. Therefore, by manipulating
features in the frequency domain, we can exert finer control
over the various components in the features, thereby boosting
the model’s performance.

In particular, the Fourier Adaptive Attention mechanism
is utilized to process Z;, producing the frequency domain
feature Wj;. Initially, a discrete Fourier transform [24] is
performed on the input feature Z; to obtain its frequency
domain representation Fy;:

Fjj = FFT (Z) (13)

We then design an attention mechanism to procure three
representations—query (Q), key (K), and value (V)—via a
linear transformation of the frequency domain representation
Fy:

Qi = Wo * Fyj
K,‘j = WK *Fij
Vij=Wv*F,'j (14)

where Wy, Wk, and Wy are learnable weight matrices.
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The intricate interaction between the query and the key is
captured through the Gaussian kernel function:

0y = exp (— ||Ql~,~—1<,~j||2/(2*02)) (15)

where o is a learnable parameter.

The softmax function is employed to normalize the result
of this Gaussian kernel function, and the Fourier inverse
transform is performed to convert the frequency domain fea-
tures back to the spatial domain:

Wj; = IFFT (Soft max (Oy) * V;j) (16)

Ultimately, the enhanced feature maps of all categories are
weighted and stacked to deliver the final segmentation output.

Figure 4 provides a visualization of the single-channel
result of the category representing a car in the feature map
of the classifier output. It can be observed that aside from
the pixels located at the car’s position, the brightness of
pixels elsewhere is relatively low. The congruence of the
bright spots in this channel map with the shape and position
of the car in the label map directly determines the model’s
prediction accuracy for the car category. From a theoreti-
cal perspective, the visualization phenomenon presented in
Figure 4 is primarily attributed to the design and operation of
the Class-Aware Context Enhancement Module (CACEM).
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CACEM, by mapping each pixel to its associated probability
distribution, enables an explicit fusion of category-specific
and contextual information. This design ensures that the
model, when performing semantic segmentation, can rely
not just on the inherent information from each pixel, but
also on the category information from surrounding pixels.
Throughout this process, category information is explicitly
encoded into single-channel feature maps corresponding to
each category. Consequently, this empowers the model to
extract more precise contextual information beneficial for the
accurate classification of the current category.

IV. EXPERIMENTS AND ANALYSIS

The efficacy of the CACEM and the superior performance of
CACNet were corroborated through a series of experiments
conducted on two widely accepted public datasets, namely
Cityscapes and CamVid.

A. EXPERIMENTAL SETUP

Training of the CACNet was conducted on a hardware
platform comprising dual NVIDIA GTX 2080Ti GPUs, com-
plemented by an Intel Xeon CPU at 2.20GHz and 128GB
of system RAM. The models were implemented and trained
using the TensorFlow and Keras frameworks.

Initially, the backbone network, SMBCN, was pre-trained
on the Cityscapes dataset for 300 epochs, which equates to
approximately 32 hours of computational time. This initial
training phase was crucial to establish a baseline for feature
extraction from the dataset. The training process was gov-
erned by the following update rule for the weights W at each
epoch t:

Wt+1 =W, —nVL(W,) an

where 7, is the learning rate at epoch ¢t and VL (W) is the
gradient of the loss function L with respect to the weights
Wt.

Subsequently, we integrated the Class-Aware Con-
text Enhancement Module (CACEM) into the pre-trained
ERFNet. During this phase, only the parameters of the
CACEM module were trained, ensuring that the module could
effectively learn to capture and utilize the context information
specific to each category. The learning rate for this stage was
set at le™#, following the.update rule:

Weacem,,., = Weacem, — nVL (Weacem,) (18)

Finally, the entire CACNet architecture underwent a fine-
tuning process. The learning rate was sustained at 1°7%,
and the network was trained for an additional 100 epochs.
This fine-tuning step was instrumental in optimizing the
interaction between the backbone and the CACEM, thereby
enhancing the network’s overall segmentation accuracy.

Poly learning rate decay strategy was applied across all
phases, with the learning rate 7, adjusted according to:

£\ Power
Nt = Ninitial X (1 - 7) (19)
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TABLE 2. Ablation experiment results on the Cityscapes dataset.

Model mloU(%) Params(M) FloPs(G) FPS
ERFNet 65.5 0.56 4.09 57
+SMBCN 67.3 0.48 4.11 60
+CACEM 71.4 0.52 4.66 58

TABLE 3. Ablation experiment results on the CamVid dataset.

Model mloU(%) Params(M) FloPs(G) FPS
ERFNet 68.2 0.52 3.71 54
+SMBCN 70.5 0.49 3.53 63
+CACEM 71.7 0.50 3.61 59

where nipniriqr 1 the initial learning rate, ¢ is the current epoch,
T is the maximum number of epochs, and power is set
to 0.9, dictating the decay rate. This strategy ensures that
the learning rate decreases polynomially with the number
of epochs, enabling finer adjustments to the weights as the
network converges.

Training focused exclusively on the finely annotated
images within the Cityscapes dataset, deliberately excluding
the 20,000 coarsely annotated images to ensure high-quality
data input. Prior to feeding these images into the network,
rigorous data preprocessing steps were undertaken. This
included normalization of image pixel values, augmentation
techniques like rotation and scaling to enhance generaliza-
tion, and cropping to maintain consistency in image size and
aspect ratio. The overall network training, enriched by these
preprocessing strategies, was conducted over 300 epochs.
Each epoch meticulously processed input images with a
resolution of 1024 x 512 pixels, ensuring that the network
received well-prepared and standardized data at each step.
This approach maximized the efficacy of the training process,
allowing the network to learn more effectively from the intri-
cately annotated data.

B. ABLATION EXPERIMENTS

Employing ERFNet as the baseline backbone network,
we tested the efficacy of our primary network, SMBCN,
and the CACEM module. Metrics for evaluation included
segmentation accuracy, model parameters, computational
requirements, and inference speed. The experimental findings
are delineated in the subsequent table:

Remarkable improvements were observed with the
SMBCN backbone compared to the ERFNet backbone
across both Cityscapes and CamVid datasets. In terms of
the Cityscapes dataset, mloU experienced an enhancement
by 1.8 percentage points, model parameters were reduced
by 0.08M, computations increased by 0.02G, and infer-
ence speed advanced by 3FPS. For the CamVid dataset,
mloU improved by 2.3 percentage points, model parameters
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TABLE 4. Ablation study results on the cityscapes Dataset.

Model mloU(%) Params(M) FloPs(G)
Baseline (SMBCN only) 67.3 0.48 4.11
Category Mapping Only 68.5 0.49 4.20
Feature Integration w/o Adaptive Learning 69.8 0.50 4.25
Adaptive Learning w/o Fourier Transform 70.2 0.51 4.30
Without Fourier Transform 70.6 0.52 4.35
High-Frequency Components Only 69.5 0.52 4.35
Low-Frequency Components Only 68.9 0.52 4.35
Self-Attention (SA) 70.9 0.53 4.40

Convolutional Block Attention Module

(CBAM) 71.0 0.53 4.42
Squeeze-and-Excitation (SE) Block 70.8 0.53 441

decreased by 0.03M, computation decreased by 0.18G, and
the inference speed increased by 9FPS.

Further accuracy enhancements were attained by append-
ing the CACEM module to the SMBCN backbone network,
with minimal impact on model size. For the Cityscapes
dataset, the integration of the CACEM module led to an
mloU increase by 4.1 percentage points, model parameters
increment by 0.04M, computation augmentation by 0.55G,
and an inference speed decrement of 2FPS. Nevertheless, the
inference speed still achieved S8FPS, fulfilling the real-time
requirement of over 30FPS for driving scenarios. Similarly,
for the CamVid dataset, the CACEM module’s addition led
to an mloU increase by 1.2 percentage points, model param-
eters increment by 0.01M, computation increment by 0.08G,
and an inference speed decrement of 4FPS. However, the
inference speed still reached 59FPS, meeting the real-time
requirement of over 30FPS for driving scenarios.

The CACEM module’s parameters predominantly reside
within the context information extraction module, and the
number of feature map channels is contingent upon the
backbone network’s feature map channels. During the exper-
iments, the two context information branches derived from
the backbone network had feature map channel numbers
of 128 and 64, and resolutions of 1/8 and 1/4, respec-
tively. The context information extraction module executes
feature compression operations on the two features, employ-
ing 3 x 3 and 1 x 1 convolutions to reduce the number
of feature map channels to 32 and 16, subsequently com-
bining them with single-channel category features to form
one input in the category feature enhancement branch of
the CACEM module. Despite the presence of multiple con-
volutional layers, the increased parameters were minimal
since each convolutional layer processes a limited number
of feature map channels, thereby ensuring the model remains
lightweight.

We further designed ablation experiments to assess the
function of the submodules within CACEM, and to com-
prehend the effects of the Fourier transform and attention
mechanisms on the overall performance of our semantic seg-
mentation model. The Statistical Multi-Branch Convolution
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Network (SMBCN) served as our baseline, onto which we
incrementally introduced components of CACEM to evaluate
their individual and combined impacts. The experimental
results are presented in Table 4.

In the comprehensive ablation studies conducted to dissect
the Class-Aware Context Enhancement Module (CACEM)
and its constituents, we witnessed a nuanced interplay
of performance impacts across the different configurations
tested on the Cityscapes Dataset. The baseline model, which
operates solely on the Statistical Multi-Branch Convolution
Network (SMBCN), achieved a mean Intersection over Union
(mIoU) of 67.3%.

When the Category Mapping Only approach was adopted,
where pixels were mapped to categories based solely on
softmax-normalized probabilities, we observed a modest
improvement in mloU to 68.5%. This increment highlights
the significance of precise category mapping in enhancing
segmentation accuracy. Further complexity was added with
Feature Integration without Adaptive Learning, leading to an
mloU of 69.8%. This suggests that integrating multi-scale
context information, even without adaptive learning, con-
tributes positively to the model’s discernment capabilities.
The Adaptive Learning without Fourier Transform variant
marked an mIoU of 70.2%, underscoring the value of adap-
tively weighted features in capturing the intricacies of the
semantic classes, despite the absence of frequency domain
processing.

Interestingly, the exclusion of the Fourier Transform from
the CACEM led to a higher mIoU of 70.6%. This could indi-
cate that while the Fourier Transform contributes to feature
enhancement, its absence does not significantly detract from
the model’s performance, possibly due to the redundancy
of information in the spatial domain. Isolating frequency
components revealed differential effects: High-Frequency
Components Only registered a decrease in mloU to 69.5%,
while Low-Frequency Components Only further declined
to 68.9%. This delineates the high-frequency components’
role in capturing fine-grained details that low-frequency
components may miss, thus being more consequential for
segmentation accuracy.
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TABLE 5. Comparative experimental results on the cityscapes dataset.

Method Road Sid Bui Wal Fen Pol Tl Tsi Veg Ter Sky
ENet 92.7 78.1 85.3 443 415 52.1 61.8 64.2 85.9 63.7 88.9
CGNet 93.5 79.4 86.7 45.6 43.2 53.5 62.9 65.7 87.2 64.9 90.2
ERFNet 94.3 80.6 87.9 46.9 44.8 54.7 64.1 67.1 88.5 65.9 91.4
NDNet 94.9 81.7 88.9 47.9 46.2 55.8 65.1 68.3 89.6 66.7 92.5
BiseNet 95.3 823 89.5 48.6 47.1 58.6 66.0 69.2 90.3 67.3 93.1
ICNet 96.0 82.9 90.0 492 47.9 57.1 67.7 70.0 91.0 68.0 93.7
BiSeNet V2 97.8 82.9 90.5 50.2 48.7 56.9 68.5 68.7 92.0 69.8 93.6
PIDNet 97.5 83.0 91.5 49.8 49.1 57.0 68.0 69.0 91.8 70.5 93.9
RegSeg 98.4 83.2 90.7 50.5 48.9 56.7 69.0 68.9 92.3 69.9 93.8
CACNet 98.2 83.4 91.2 50.8 49.1 57.4 67.2 70.3 92.4 70.2 94.8
Method Per Rid Car Tru Bus Tra Mot Bic MIoU
ENet 74.8 59.1 89.1 40.6 56.2 44.1 52.4 64.2 65.2
CGNet 75.6 60.3 90.1 41.7 57.3 45.2 53.5 65.3 66.4
ERFNet 76.3 61.5 91.1 42.7 58.3 46.2 54.6 66.4 67.5
NDNet 77.0 62.6 92.0 43.6 59.3 47.1 55.6 67.4 68.5
BiseNet 77.6 63.6 92.8 444 60.2 459 56.5 68.3 69.3
ICNet 78.3 64.5 93.5 45.1 61.0 48.6 56.3 69.1 70.0
BiSeNet V2 78.4 65.2 94.7 442 60.6 46.3 57.0 69.0 70.3
PIDNet 80.1 64.3 93.8 445 60.2 474 55.8 69.8 70.4
RegSeg 71.9 65.0 94.6 435 59.8 483 56.1 68.5 70.3
CACNet 79.8 64.2 95.1 44.7 61.3 48.2 57.5 69.3 70.8

In the ablation experiments, we evaluated the role of
attention mechanisms relative to the performance of CACE).
The Self-Attention (SA) mechanism resulted in an mloU
of 70.9%, highlighting its effectiveness in capturing global
dependencies within the data. The Convolutional Block
Attention Module (CBAM) showed a slight improvement
with an mIoU of 71.0%, suggesting the benefits of address-
ing both channel and spatial features for a comprehensive
feature analysis. The Squeeze-and-Excitation (SE) Block
attained an mloU of 70.8%, which supports the significance
of channel-wise feature adjustments. Although these atten-
tion mechanisms each have their strengths, our CACEM’s use
of the Fourier Adaptive Attention mechanism outperforms
these standard approaches. CACEM’s strategy to process
features in both spatial and frequency domains allows for a
more detailed and context-aware segmentation. This inno-
vative approach provides a clear advantage, as it not only
enhances the distinctiveness of category-specific features
but also maintains a high segmentation accuracy, thereby
reinforcing the effectiveness of CACEM in complex segmen-
tation tasks.

C. COMPARATIVE EXPERIMENTAL RESULTS

To verify the superior performance of CACNet, experiments
were conducted on the Cityscapes and CamVid street scene
datasets, and comparisons were made with other lightweight
semantic segmentation networks. The detailed results are as
follows:

1) CITYSCAPES DATASET
On the Cityscapes dataset, comparisons were made with
advanced methods such as ENet [9], CGNet [16], ERFNet
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[10], NDNet [12], BiseNet [13], ICNet [17], BiSeNet V2
[31], PIDNet [35], RegSeg [35], etc. The specific results are
as follows TABLE 4:

In the evaluation of semantic segmentation models on the
Cityscapes dataset, as presented in Table 5, the Class-Aware
Context Network (CACNet) exhibited exemplary perfor-
mance, achieving the highest mean Intersection over Union
(mIoU) score of 70.8%. This performance was not only con-
sistent across the majority of individual categories but also
demonstrated superior precision in 9 out of the 19 classes,
highlighting the model’s robustness and adaptability across
diverse urban scenes. Particularly notable is the model’s per-
formance in the ‘Sky’ and ‘Motorcycle’ categories, where
CACNet achieved 70.3% and 61.3% accuracy, respectively,
surpassing the next best-performing model by 0.9% and
0.5%. Such fine-grained differentiation is crucial in urban
landscape parsing where structures like buildings and vege-
tation are prevalent.

Moreover, in direct comparison to the intricate multi-branch
structures of ICNet and BiseNet, which command a con-
siderable parameter volume of over 10M, CACNet’s more
modest parameter count of approximately 0.52M repre-
sents a breakthrough in efficient network design. This
significant reduction in complexity does not come at
the cost of performance; rather, it emphasizes the strate-
gic design choices made in CACNet that avoid redun-
dant computations and focus on feature quality over
quantity.

These quantifiable advances are a testament to the efficacy
of the model’s architecture, particularly the integration of
the CACEM, which facilitates a nuanced understanding of
class-specific context. Such context awareness is pivotal in
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FIGURE 5. Visualization of category features on the cityscapes dataset.

TABLE 6. Comparative experimental results on the camvid dataset.

Method Bui Tre Sky Car Sig Roa Ped Fen Pol Sid Bic mloU
ENet 82.1 75.3 89.1 86.9 35.2 92.5 64.1 50.1 422 83.1 60.8 69.2
CGNet 83.6 76.5 90.0 88.0 36.3 93.3 65.6 51.3 433 84.2 62.3 70.4
ERFNet 84.9 77.6 90.7 88.9 373 93.9 66.9 524 443 85.2 63.7 71.4
NDNet 85.9 78.6 91.3 89.7 382 94.4 69.9 534 43.2 86.1 64.8 72.3
BiseNet 87.1 79.6 92.7 90.8 39.2 95.7 68.8 53.9 46.1 87.0 65.8 73.3
ICNet 87.8 80.4 92.5 91.6 39.8 96.3 69.1 55.0 46.7 87.9 66.4 74.0
BiSeNet V2 87.9 80.6 92.9 91.8 40.2 96.1 70.2 55.1 47.6 88.1 66.0 74.2
PIDNet 87.5 80.2 92.6 91.5 39.7 95.8 69.7 54.8 46.8 87.5 65.6 73.8
RegSeg 87.7 80.5 92.8 91.7 39.9 95.9 69.9 55 46.9 87.8 65.9 74.0
CACNet 88.6 81.2 94.2 93.0 40.3 97.7 69.3 54.2 473 89.2 65.1 74.6

semantic segmentation tasks and is evidently reflected in the
enhanced precision of CACNet’s output.

Figure 5 displays the schematic post-feature enhancement
for the three categories of roads, buildings, and cars in
CACNet. Unlike the raw and chaotic intensity distribution
in Figure 2, one can clearly discern the edges, shapes, and
positions of each category here. Utilizing enhanced category
features simplifies outputting precise segmentation results.

2) CAMVID DATASET

The results in Table 6 highlight the performance of various
semantic segmentation models on the CamVid dataset. The
CACNet model, our proposed approach, outperforms other
models with an mIoU of 74.6%. It shows notable improve-
ments in specific categories like ‘Sky’ (94.2%) and ‘Car’
(93.0%), which are critical for applications in autonomous
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navigation and urban planning. Compared to the BiSeNet
V2 and RegSeg models, which show mloUs of 74.2% and
74.0% respectively, CACNet demonstrates a clear advan-
tage, particularly in complex urban environments. The model
achieves this high accuracy while maintaining a smaller
parameter size, indicating its efficiency and effectiveness for
real-time processing. The performance gain with CACNet
can be largely attributed to its innovative Class-Aware Con-
text Enhancement Module, which significantly improves the
representation of inter-class relationships and context under-
standing. This enhancement is pivotal in scenarios where
the precise delineation of objects from their surroundings is
essential.

Figure 6 exhibits some segmentation results of CACNet
on the Cityscapes dataset. Arranged from left to right are the
original image, ground truth, ENet, ERFNet, and CACNet
segmentation results. The red circles in the figure indicate
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FIGURE 6. Visualization of some results on the CamVid dataset.

FLOPS Comparison Among Different Models
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FIGURE 7. Comparison of FLOPS metrics for different models.

areas with notable improvements in the segmentation results.
It can be observed that the segmentation outcomes of CACNet
align more closely with the ground truth.

We further compared the FLOPs performance of different
models, and the comparative results are shown in Figure 7.
It can be observed that CACNet has the lowest FLOPs
(4.41 GFLOPS). This indicates that CACNet is more com-
putationally efficient than other models. In scenarios with
limited computing resources, such as mobile devices or
edge computing devices, CACNet is a more suitable choice
because it requires fewer computing resources and may also
have lower power consumption.

V. CONCLUSION

This paper introduced a lightweight feature enhancement
module, the Class-Aware Context Enhancement Module
(CACEM). Through visual observation and analysis of the
coarse segmentation results yielded by the backbone net-
work, along with drawing from previous research insights,

VOLUME 11, 2023

ENet

EFRNet CACNet

a statistical multi-branch convolutional network is designed
as the backbone network. Furthermore, a method to directly
enhance the category feature map is proposed. The amalga-
mation of contextual information with category information
benefits in two ways: (1) Guiding the application of contex-
tual information using category information can mitigate mis-
classifications due to deficient prior knowledge; (1) Strength-
ening category feature information can directly influence
segmentation outcomes, and integrating contextual infor-
mation can considerably enhance segmentation accuracy.
Experimental results indicate that the lightweight semantic
segmentation network CACNet, based on the CACEM mod-
ule, achieved segmentation accuracies of 70.8 and 74.6 on the
Cityscapes and CamVid datasets, respectively. These results
rank among the best in lightweight segmentation models.
Simultaneously, the model size is only 0.52M, the inference
speed exceeds S8FPS, and overall performance surpasses all
methods in the comparison.
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